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Abstract 

We discuss the Grassmannian of self-adjoint global elliptic boundary conditions with ys- and 
gauge-invariance of the domain for the Dirac operator over the 4-ball coupled to a gauge config- 
uration with non-trivial curvature form. We show that this space contains a variety of boundary 
conditions in addition to the spectral Atiyah-Patodi-Singer projection and that some of them, like 
the Calderon projector, imply the vanishing of the index of the Dirac operator and therefore the 
invariance of the fermion determinant under global (i.e. rigid) chiral transformations. 
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0. Introduction 

The standard wisdom on chiral symmetry in QCD relies on the deep relation between 
the topological density of gauge field configurations and the so-called local chiral anomaly, 
namely, the appearance of a “topological term” in the conservation equation of the chiral 
current, F j, = -1/16n2F F (see [6] for the derivation in the context of an euclidean 
functional integral formulation). This is usually regarded as implying the impossibility of 
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a functional integral formulation invariant under rigid (i.e. “global”) chiral transformations 
by an argument which relies on the index theorem relation [1,2] between the number of 
zero modes, n+ - n_, of the Dirac operator (which governs its transformation under global 
chiral rotations), and the integral of the anomaly [ 16,201. 

However: 
(i) In infinite volume such relation only holds if the gauge field configurations are pure 

gauges at large space-time points, and one can show that the functional measure of 
such configurations vanishes. 

(ii) The same relation holds in finite volume (in any case a necessary strategy for the 
construction of the functional integral) only if the spectral Atiyah-Patodi-Singer (APS) 
boundary conditions are assumed for the Dirac operator [ 16,201. 

(iii) The alternative strategy of compactifying euclidean space-time to a sphere avoids 
the infinite volume problem, but again crucially depends on the implicit, and special, 
choice of boundary conditions at infinity (playing the same role as the APS boundary 
conditions). Since the absence of (global) chiral symmetry for the functional measure 
has important physical implications, especially on the conservation of CP in QCD (see 
e.g. [ 13]), it is important to discuss whether there are alternatives to the APS boundary 
conditions, and in this case what are their implications on the index-theorem relation 
between zero modes (n+ - n_) and the topological number of the gauge fields. 

It is worthwhile to stress that the possibility of a functional measure invariant under global 
chiral transformations in finite volume (compatibly with the local anomaly) allows for a 
treatment of chiral symmetry breaking as a spontaneous symmetry breaking in the infinite 
volume limit, with crucial consequences on the CP problem in the strong interactions [ 131. 
We are, therefore, led to investigate the existence of boundary conditions for the eJclidean 
Dirac operator, satisfying 
(a) elliptic@ and self-adjointness, providing a discrete real spectrum with finite multiplic- 

ities and accumulation points only at &co (so that regularized fermion determinants 
exist); 

(b) invariance of the domain under chiral transformation, generated by ys, in order that 
global chiral rotations be well defined; 

(c) covariance of the domain under gauge transformations of the gauge fields: if two gauge 
field configurations, A,(x), Ah(x), are (locally) related by a gauge transformation 
AL(x) = U-‘(x)AP(x)U(x) + U-‘(x)&U(x), then the boundary conditions of the 
corresponding Dirac operators are related by the restriction of U(x) to the boundary; 

(d) and leading to global chiral symmetry of the fermion determinant, i.e. n+ - it- = 0. 
The use of boundary conditions satisfying (a)-(d) for the Dirac operator implies (see 

e.g. [ 131) the vanishing of the imaginary part of the logarithm of the fermion determinant, 
which, in a gauge field configuration A, is of the form 

&(n+ - n-)(A) 

with 0, the angle appearing in the fermion mass term 

Ilr(cos(&) + i sin(&)ys)$. 
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On the mathematical level one could simplify considerably the 5 -function regularization 
of the determinant bundle with 

(‘(s) = -2 C In ]~(es1n~A~2 
~=+=~A 

% -[(n+ + n_) In m + i(n+ - n-)8,] e- Slll1712 
-c 

--s In Ill* In ]k.le 
J.#O 

The result is therefore very different from that given by the APS boundary condition; 
in that case, the index-theorem relation gives in fact a non-vanishing imaginary part of the 
fermion determinant, of the form 

-1/16n* t’,,, 
s 

F F 

and the appearence of this term is at the origin of the problems related to the 0 parameter 
in QCD, in particular the violation of the CP symmetry. We shall show that there exists a 
large class of boundary conditions satisfying (a)-(d), and it seems that, at the level of basic 
properties for the domain of the Dirac operator, there are no compelling reasons for the 
choice of the APS boundary conditions. 

In Section 1 we give a review of the theory of elliptic boundary value problems for 
any total Dirac operator 23 and, in case of even-dimensional manifolds, for the half Dirac 
operator V+ arising from the chiral decomposition 

Our definition of the ellipticity is somewhat new, and we hope that it makes this concept 
more accessible to non-specialists. The standard definition (see for instance [5, Chap. 181) is 
clearly a special case of the concept we offer here, but we suspect that actually both notions 
of the ellipticity of a boundary problem are equivalent. We apply the classical concepts 
of Cauchy data spaces and of the Calderon projector P+(2)+) in order to investigate the 
ellipticity condition. Then we review the elliptic boundary problems used by physicists 
and mathematicians. At the end of the section we discuss the Grassmannian Gr(@) of 
all generalized APS conditions, i.e. the space of all pseudo-differential projections with 
the same principal symbol as the Calderon projector. It provides a natural space of elliptic 
boundary conditions for the partial Dirac operator Df. 

In Section 2 we present a theory of ys-invariant self-adjoint elliptic boundary problems 
for any total Dirac operator 

v=(;+ y). 

We show that in a natural way each P E Gr(D’) defines a projection P’ E GrF5(D), 
the Grassmannian of ys-invariant self-adjoint elliptic boundary problems for the total Dirac 
operator. 
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In Section 3 we discuss the twisted Dirac operator PA over a 4-ball V (of large radius) 
coupled to a vector potential A (a non-trivial gauge configuration which is pure gauge 
at the boundary). We fix the notation, especially concerning the auxiliary vector bundles 
and underlying metrics and connections. We exploit the product form J?Jf; = N(E), + a~) 
of the twisted Dirac operator near the boundary and investigate the effect of changes of 
the connection form A onto the corresponding field B over the boundary entering into 
the definition of the boundary (tangential) Dirac operator 9~. We show that not only the 
spectral APS projection n, (a~) defines a gauge-invariant element of GrF5 (PA), but also 
the Calderon projector P+ (pi). 

Assume that the 4-ball V is equipped with the standard metric which makes (according 
to [ 193) the boundary Dirac operator invertible and its spectrum symmetric. Assume also 
that the vector potential A is pure gauge at the boundary. Then one obtains the well-known 
formula 

index&n, = n+(n,) - n-(Lrl) = deg(A) # 0 (1) 

derived in [ 161 from the APS index theorem. The proof will be discussed below. 
Replacing the spectral projection Al by the Calderdn projector P+(@) we get, 

contrary to (l), 

index pA,P+ = n+(P+) - n-(P+> = 0 (2) 

since, by definition, n+(P+> and n_(P+) vanish. From (2) we get the main result of this 
paper, namely that any twisting of the euclidean Dirac operator over the 4-ball by means of 
a connection in an auxiliary bundle of coefficients can be “lifted” to a suitable section in 
the Grassmannian providing global chiral symmetry: 

Theorem 0.1. Let Connc(V x C*) denote the space of smooth connections in the coefi- 
cients ’ bundle V x @* over the 4-ball V which are pure gauge at the boundary. Then there 
exists a smooth map 

R: Conno(V x C*) 3 A H R(A) E Gr(@i), 

which satisfies properties (a)-(d). 

From a mathematical point of view, the preceding theorem provides the best solution 
available for the compatibility problem of global chiral symmetry with local symmetry 
breaking when the section R of the Grassmannian is based on the Calderon projector, since 
it provides 

nb(R(A)) = 0 

for any connection A. 

(3) 

In Section 4 we discuss various alternative self-adjoint, elliptic, ys- and gauge-invariant 
boundary problems for the twisted Dirac operator PA with vanishing n+ - n- to give a 
clear and complete picture of the variety of possibilities of obtaining compatibility of global 
chiral symmetry with local chiral asymmetry. 
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In Section 5 we make some remarks on the construction of the Calderon projector and 
its relation to the spectral projection (APS boundary condition). 

In Appendix A we determine, based on a result by Nicolaescu, the adiabatic limit of the 
Cauchy data spaces of the twisted Dirac operator for the radius of the 4-ball R --$ 00 in terms 
of the eigenfunctions of the corresponding tangential Dirac operator over the 3-sphere. 

1. A brief review of the theory of elliptic boundary problems for Dirac operators 

Let M be a compact smooth oriented Riemannian manifold with boundary Y, and let S -+ 
M be a bundle of Clifford modules with compatible Hermitian structure and connection 
(covariant derivative) D. The (total) Diruc operator 

V :C=(M;S)+ Cm(M;S) 

is obtained by suitably composing the connection D : Co3 (M; S) --+ P(M; T* M 8 S) 
with the Clifford multiplication c : P(M; TM @ S) -+ P(M; S). 

Clearly 27 is an elliptic differential operator. It is formally self-adjoint and Green ‘s,formula 
holds for all spinors s and s’: 

Ps, s’) - 6, w = - s (N(Y)(SlY), S’IY), 

Y 

(4) 

where N := c(n) : Sly -+ Sly denotes the unitary bundle isomorphism given by Clifford 
multiplication by the inward unit tangent vector. 

To proceed further we assume that M is an even-dimensional manifold. Let y5 denote 
the global section of Hom(S, S) defined locally by 

y5 := c(el) . . . c(ek), 

where (e@} is any positively oriented orthonormal local frame of tangent vectors and k 
denotes the dimension of the manifold M. Since k is even, S splits into subbundles S* 
spanned by the eigensections of Y5 corresponding to the eigenvalue f 1, if k is divisible by 
4, or fi otherwise; the Clifford multiplication N switches between S* I y and Sr I y ; and 
the Dirac operator splits correspondingly into components 

such that the right partial (half) Dirac operator DD’ : Cm(M; Sf) + Cm(M; S-) is 
formally adjoint to the left partial operator V- : P'(M; S-) -+ C"( M; S+). 

To simplify the exposition we assume that the Riemannian metric and the Hermitian 
structure are product near the boundary. Let us point out that the results presented here 
remain true also for non-product structures. Admitting non-product structures, however, 
makes the analysis more complicated especially when one wants to discuss the { regularized 
determinant and related asymptotic expansions. 



224 6. Boo&Bavnbek et al. /Journal of Geometry and Physics 22 (1997) 219-244 

Close to the boundary, the total Dirac operator splits into the following product form: 

(5) 

where r denotes the inward oriented normal (radial) coordinate in a collar neighbourhood of 
the boundary and a : C?(Y; Sf) --+ P(Y; S+) denotes the (tangential) Diruc operator 
over the boundary. Notice that in fact 

f2 = -1 and rt3 = -Br 

as required by the formal self-adjointness of D. 
We also discuss the operator Df alone. It has the following form on the collar: 

v+ = N (a, + 3). (6) 

The Dirac operator on an odd-dimensional manifold has the same form r(a, + 23) on the 
collar. In this case the total operator 2) does not split, but the tangential operator is a Dirac 
operator on an even-dimensional manifold and has therefore the following form: 

B=(B”’ Y). 

Now we want to discuss the properties of a Dirac operator over a compact manifold with 
boundary. In the beginning we shall not distinguish between the cases of even- and odd- 
dimensional manifolds and whether we treat the total or the half Dirac operator. So, let 
A E {D, Df) with A : P(M; E) + COO(M; F), E, F E (S, S’}, and product form 
A = r(i3, + B) near the boundary Y. 

Contrary to the case of a closed manifold, the space 

‘FI(d, co) = (s E P(M; E) I d.s = 0} 

of solutions of the operator A is an infinite-dimensional subspace of C”(M; E). There 
is also a question of regularity of the solutions. Let s denote a solution of A, which is an 
element of the space L*(M; E) (or more generally of Hk(M; E) the kth Sobolev space). 
In general, it does not follow that s is a smooth section of S. This leads us to the following 
general definition of ellipticity. 

Definition 1.1. Let A be a Dirac operator on M and let Ax be a closed extension of A in 
L2(M, S) with domain 7’2. We call AR an elliptic boundary problem for the operator A if 
and only if the following two conditions are satisfied: 
(I) The extension AR : R + L2 of A is a Fredholm operator. 

(II) The spaces ker AR and coker AR are (respectively in the case of the cokernel: can be 
represented us) finite-dimensional subspaces of the spaces of smooth sections. 

Remark 1.2. Let H(d) denote the space of all L2 solutions of the operator A. Then we 
may reformulate condition (II) in the definition as follows: 

R n N(d) c Coo and R* n X(d*) c C”, 

where R* denotes the domain of the adjoint operator. 
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It seems at first sight that the boundary Y does not appear in the definition, but usually 
the domain R is defined by a condition posed on the spinors on the boundary: Let yo denote 
the restriction map vu(s)(y) := ~(0, y). It gives a continuous map yu : Ht(A4; E) -+ 
L2 (Y; E 1 y ). The condition which determines 72 is usually given in the form 

‘R = (S E H’(M; E) ] T(yo(s)) = 01, 

where T : L*(Y; E 1 y) + L*(Y; G) is a zeroth order pseudo-differential operator. Of 
course T has to satisfy certain additional assumptions to guarantee fulfilment of conditions 
(I) and (II) from the definition. We have to introduce the Calderon projection in order to 
explain those conditions. 

The Culder6n projector P+(d) is defined as the (without loss of generality orthogonal) 
projection of L2 (Y; E) onto the Cuuchy data space, also called Hardy space in Clifford 
analysis: 

X+(d) := (sly ) s E COO(M; E) and d.r = 0 in M \ Y}L2(Y’E’y). 

We discuss the construction of the Calderon projector in the last section of this paper. Let 
us only point out that the principal symbol p+(y; <) of P+(d) is equal to the orthogonal 
projection onto the direct sum of the eigenspaces of the automorphism b(y ; <) corresponding 
to the positive eigenvalues. Here b denotes the principal symbol of the tangential operator 
fl. Now we are ready to formulate the conditions which the operator T has to satisfy: 

Definition 1.3. Let T : C”(Y; E) -+ C”( Y; E) be a pseudo-differential operator of 
order 0. We call T an elliptic boundary condition for the operator A if the following 
conditions are satisfied: 
(I’) For any real r, the extension T’ : H’(Y; E) + H’ (Y; E) of T has a closed range. 

(II’) Let 0 (T) denote the principal symbol of T. Then 

range(a(T>) = range(a(T) o p+). 

In particular the restriction ~(T))rmge(~+) : range(p+) -+ range(a(T)) is an iso- 
morphism of vector bundles. 

Condition (I’) implies that NT, the orthogonal projection onto the kernel of T, is a pseudo- 
differential operator (see [5, Proposition 18.111). For the ease of notation we shall denote 
the kernel of T by the same letter n/T. Condition (II’) implies that the couple (NT, ‘Ii+ (A)) 
is a Fredholm pair of subspuces, i.e. a pair of closed subspaces with finite-dimensional 
intersection and with sum of finite codimension (then the difference of these two dimensions 
is called the index of the pair; see [5]). More precisely we have the following result. 

Proposition 1.4. Let T be us in De#nition 1.3. Then the couple (NT, 'Ii+ (A)) is a Fredholm 
pair of subspaces in L2(Y; E 1~) with 

index (h/T, 31+(d)) = indexIT o P+(d) : X+(d) -+ range(T)] = index dr, 
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where AT denotes the realization of the operator A with the domain 

b E H’(M; E) I Two(s)) = 01. 

ProoJ: We show that index (NT, 7-l+(A)) = index(Z?+(A) : ‘H+(A) -+ range(T)) and 
refer to [5, Theorem 20.81 for the proof of the second equality. 

Let us assume that z is an element of n/r fl X+(A). This implies that 

Tz = 0 and P+(A)z = z, 

which shows that z is an element of the kernel of the operator T P+ (A). Let us also observe 
that the second equality of (7) shows that there exists a uniquely determined s such that 
h = 0 and vu(s) = z. Therefore we have shown 

ker AT Z ker TP+(A) = MT II X+(A). 

Now let us assume that w is an element of (&- +‘H+ (A))l . It means that w is perpendic- 
ular to X+ (A), hence P+(A) w = 0 and that w is perpendicular to the kernel of T. Therefore 
there exists q such that w = T*q, which provides the identification of ker P+(A)T* with 
the orthogonal complement of the sum and thus ends the proof of the proposition. ??

Now we review some examples of boundary value problems for Dirac operators. We 
begin with the theoretically most obvious example: 

Example 1.5. We put T := P+(A), the Calderdn projector of A. This is an elliptic bound- 
ary condition and in the case of the total Dirac operator A := ‘D it provides us with a 
self-adjoin& elliptic boundary problem for the operator V. In the case of A = V)+ we 
obtain a closed (unbounded) Fredholm operator V$+(,+) with index equal to 0. 

We have to choose different boundary conditions in order to obtain a non-trivial index. 

Example 1.6. We still discuss the operator V + . Then the tangential Dirac operator a is a 
self-adjoint elliptic differential operator over the closed manifold Y and it has an orthogonal 
complete system of eigenspinors providing a spectral decomposition of L2(Y; S+Jy). Let 
n,(a) and n,(g) denote the orthogonal projections of L2(Y; S+Jr) onto its subspace 
spanned by the eigenspinors corresponding to the non-negative and negative eigenvalues of 
8, respectively. These spectralprojections are pseudo-differential operators and the principal 
symbol of n> (iI> is equal to p+ . Therefore n, (3) is an elliptic boundary condition for the _ - 
operator V+ . The problem V+n,(,s) was studied by Atiyah et al. [2], where they gave the 
famous index formula for the operator VD+n, (a). We will discuss this formula later. 

Example 1.7. Let us discuss the APS problem for the total operator V in the case of an 
odd-dimensional manifold M. In this case their index formula gives 

index Vn, (9) = dim ker B+, 

i.e. for non-vanishing kernel of the tangential operator the APS problem for the total, sym- 
metric Dirac operator is not self-adjoint, and its index is not stable under small deformations. 



B. Boo&Bavnbek et al./Journal of Geometry and Physics 22 (1997) 219-244 221 

On the other hand, Green’s formula shows that in the case ker(fl) = {0) the operator 
Vn,(a) is a self-adjoint operator. 

Example 1.8. For odd-dimensional M we have two natural local elliptic boundary condi- 
tions n* for the total Dirac operator defined by the chiral projection of Sir onto (Sl r)*. We 
then get index VD,_ - index V,, = index jI+. But index V,, vanishes by Green’s formula 
so that we get the illustrious cobordism theorem from the preceding equality, namely the 
vanishing of the index of any (half) Dirac operator over a closed even-dimensional manifold 
Y, if the operator can be written as the (half) tangential operator of a (total) Dirac operator 
over an odd-dimensional manifold M with aM = Y. 

Example 1.9. Also on any odd-dimensional manifold M we have the chiral bag model: 
Let S be a bundle of Clifford modules and V : C”(M; S) + CW(M; S) a compatible 
Dirac operator over M. For any natural n and any smooth map g : Y + U(n) we get a 
self-adjoint elliptic operator A, acting like 

A:= (“0” _:,> 
with 

where nV := V 03 Idc:n. 

Example 1.10. Now we return to the case of even-dimensional M and replace the spectral 
projection (i.e. the APS boundary condition for the partial Dirac operator ‘I?> by projections 
belonging to the Grassmannian Gr(V+) of generalized APS boundary conditions for Vf. 
The space Gr(V+) is defined as the space of pseudo-differential projections with principal 
symbol equal to the orthogonal projection p+ . Here “projection” means “idempotent” 
(i.e. P = P2). The Grassmannian is locally pathwise connected and has countably many 
connected components; two projections Pl, P2 belong to the same component, if and only 
if the virtual codimension 

i(P2, PI) := index (&PI : rangePI -_, rangeP2) = index (Id - 4, PI) (8) 

of PI in P2 vanishes. Here index (Id - P2, Pi) denotes the index of the Fredholm pair (of 
ranges of the projections). The higher homotopy groups of each connected component are 
given by Bott periodicity. According to proposition 1.4 we have index Vf = i( P, P+ (V+)) 
for all P E Gr(V+). 

Note 1. Important elements of Gr(V+) are the weighted spectral projections l7,, (9) with 
a cut of the spectrum at an arbitrary real a. More precisely, they are defined as the orthogonal 
projections onto the direct sum of the eigenspaces of the tangential Dirac operator g for 
eigenvalues 2 a. 
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Another important example is the Culderdnprojector P+ (IT+) discussed in Example 1 S. 
Note that the Calderon projector is defined in global data whereas the spectral projections are 
defined by the data of the tangential Dirac operator, i.e. by data that live on the boundary. 
In any case, they have the same principal symbol p+, but in general belong to different 
connected components of the Grassmannian. 

Example 1.11. Let us now assume that M is an odd-dimensional manifold. In this case 
we have also an important self-udjoint Grussmanniun Gr*(D) of self-adjoint boundary 
conditions of APS type. This is the subspace of Gr(D), which consists of those (orthogonal) 
projections P, which satisfy the condition 

-rPf = Id - P. 

Any element of Gr* (D) defines a self-adjoint elliptic boundary value problem for the oper- 
ator D. 

2. yyInvariant elliptic boundary problems 

In this section we discuss the boundary value problems related to the physical situation 
described in the Introduction. We now assume that the manifold M is even-dimensional. 
We begin with two typical examples of elliptic boundary problems: 

Example 2.1. 
(a> 

(b) 

The tangential Dirac operator 9 is a self-adjoint elliptic differential operator over the 
closed manifold Y. As in Section l,l7, (3) and n, (p) denote the orthogonal projections 
of L*( Y; S+ 1~) onto its subspace spanned by the eigenspinors corresponding to the 
non-negative and negative eigenvalues of 9, respectively. Choosing 

n .= 

. ( &(a) 0 
0 Nn<GW+ 

as boundary condition we obtain an operator Vn which is a self-adjoint Fredholm 
operator with smooth kernel and cokemel and nicely spaced spectrum, such that the 
invariants 

are defined in exactly the same way as in the closed case. Here the product structure 
near the boundary is important. Actually it turns out that the spectrum is symmetric due 
to ys-symmetry, hence the n-invariant vanishes, see Proposition 2.2(b) below. 
If we set (following [lo]) 

(10) 

we obtain a realization 27~ with the same properties as listed for ‘Dn in (a). 
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The reason why the listed properties are in line with each other in these two cases is that 
P E (D, T) satisfy the same two basic conditions (for details see [4,5]): 
- The first condition is the ellipticiry (well-posedness) of the projection P defining the 

boundary condition explained in Definitions 1.1 and 1.3 above. 
- The second condition is the self-adjointness of the L*-extension. As discussed in Exam- 

ple 1.11 this is a symmetry condition in the normal derivatives, more precisely demanding 
Id - P = -FPF. 
One decisive difference between the two boundary conditions l7 and T defined in Eqs. (9) 

and (10) lies in the ys-symmetry: In view of the chiral splitting ys takes the form 

1 0 
ys= 0 -1 ( > 

for dimension of M divisible by 4 (otherwise we multiply by the imaginary unit i), hence 
ysny5 = Lr, i.e. n is ys-invariant, but ~5Ty5 = Id - T, i.e. T is not ys-invariant. 

The main result of this section is the following proposition. 

Proposition 2.2. 
(a) The mapping 

Gr(V+) 3 P I+ P# := 
P 0 
0 N(Id - P)N-’ > 

(11) 

provides us with the ys-Grassmannian G$&(V) of self-adjoint elliptic (well-posed) 
boundary conditions for the total Dirac operator ZY which are all ys-invariant. In par- 
ticular we have a natural identi$cation 

nu(GrE5 (V)) IV nu(Gr(V+)) 2 72. (12) 

(b) For all P# E G$(V) the L2 realization DD,# has a discrete real spectrum. Each 
eigenvalue is of jinite multiplicity and there are no finite accumulation points. The 
spectrum is symmetric around the origin of the real axis (hence there is no n function). 

(c) The null space 

kerV,# := {s E H’(M; S) 1 D(s) = 0 and P#(sl~) = 0} 

consists solely of smooth spinors. It is finite-dimensional and splits naturally into the 
direct sum of a space of spinors of positive chirality of dimension n+ (P#) and a space 
of spinors of negative chirality of dimension n- (P#) with 

index VD+ = n+(P#) - n_(P#), P (13) 

where P’ and P are related through (11). 

Proof Property (a) and the main proposition of property (b) follow at once from the general 
theory of global elliptic boundary problems for the Dirac operator. To prove that the spectrum 
of V,# is A. I+ --A symmetric we consider an eigenspinor 

s= E dom Vp# with Vs = As. 
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Because of the anti-diagonal form of 2) this means 

v-s_ = hs+ and D+s+ = As_ . 

Then (yi_) also belongs to dom DD,# and is an eigenspinor of D),# with eigenvalue -A, 
since 

(;+ ;-)(SSf_)=(--$;-)=(;:jt)=-A(:;_) 
and, trivially, 

N(Id - P)N-‘(s_(r) = 0 + N(Id - P)N-*(-s&) = 0. 

To see property (c), we notice that by definition 

ker Dpx = ker Z$@ ker ‘D;(td_P)N_, 

with dim ker 23: = n+(P#) and dimkerDN(Id_P)N_, = n_(P#). Since (IO:)* = 

2>- N(Id_P)N_, , it follows that index D$ = n+(P#) - n_(P#). Cl 

We close this section with a discussion of the global chiral anomaly n+ (P’) - n- (P#) 
for the y~invariant boundary conditions induced by: 
- the Calderon projector P+ (@), 
- the spectral projection n,(J), and 
- the weighted spectral projections IT?, (a) for any real a. 

For proposition 2.2(c) it suffices to determine the index of the corresponding problems 
for the partial (half) Dirac operator. 

Example 2.3. 
(a) As noticed before, from the definition of the Calderon projector it is immediate that 

ker %+(P+) = 0. From Green’s formula we get that 

P+(T) = N(Id - P+(D+))N-' , 

hence 

ker 77 
N(Id-P+((D+))N-’ 

= kerDG+(,_) = 0, 

hence the index of the elliptic boundary value problem DG+(P+) vanishes: There is no 
global chiral anomaly when imposing the Calderon projector as boundary condition. 

(b) Choosing the spectral projection Lr, (a) as boundary condition we have the APS index 
theorem which gives 

index 2)&,, = 
s 

a!(x) - i(qa(O) + dim ker?)). 
M 

(14) 
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Here o(x) denotes the locally defined index density of Vf which expresses the local 
chiral anomaly, and 

cc 

c 1 
VP(Z) := 

~q-=?\UN 
signM-z = r((z + 1),2) 

s 
&Z-r)/2 tr(@-‘“*) dt (15) 

0 

denotes the rpfunction of the tangential Dirac operator 8. Further, 
(i) it is well defined through absolute convergence for B(z) large; 

(ii) it extends to a meromorphic function in the complex plane with isolated simple 
poles; 

(iii) its residues are given by a local formula; and 
(iv) it has a finite value at z = 0 
(see e.g. [S]). 

One cannot expect global chiral symmetry for the APS boundary problem; in general, 
none of the expressions in formula (14) will vanish. For sufficiently elementary opera- 
tors and under additional assumptions the error terms na(O> and dim ker $I will vanish 
(especially for symmetric spectrum and invertible tangential operator), and fairly easy 
expressions for sM (Y(X) are obtainable (see Section 3). 

(c) For any real a we consider the weighted spectral projection n?,(jJ). From the 
AgranoviE-Dynin theorem (see [5, p. 2071) we get 

index DA_0ca, = index ‘D& (D + i(I7>, <a>, n> (a>> (16) _ _ 

with the virtual codimension defined in (8) as error term. For a >_ 0 the virtual codimen- 
sion of flI, @) = n,u(g) in l7>, (9) becomes COsl..n dim EA and for a < 0 it becomes 

- znc*<o dim Ei where EA denotes the eigenspace of the tangential operator fl cor- 
responding to L Hence, for suitable choice of a we can obtain global chiral symmetry 

index DL,,ca, = 0, 

even if the index of the APS problem does not vanish. If its index is u # 0, say u > 0, 
the spectral cut a must be chosen in such a way that &hia EA = u. 

To exploit the rich structure of the ys-Grassmannian and to investigate the passing from 
one connected component (sector) to another under change of boundary conditions we shall 
now apply the preceding theory to a specific four-dimensional problem of gauge theoretic 
physics, the problem of global chiral symmetry. 

3. Twisted dirac operators over the 4-ball 

Now we address the situation as in physics. We take a “volume” V in R4 as manifold 
M. We think of V as a ball of large radius R. Actually, we are interested in the asymptotic 
situation with R -+ 00. As the bundle of Clifford modules we take 

v x (S @ C2) = s @I C2, (17) 
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the Clifford bundle of euclidean spinors with CoefJicients in the trivial bundle V x C* with 
Clifford action c(a) @ 1. As the full Dirac operator 2> we take a twisted Dirac operator 
defined by a connection A for V x @* which is pure gauge on the boundary of V. 

To make all definitions precise, to fix the notation, and to check the parity and the signs 
we recall that the (free) euclidean Dirac operator 

0 
a -- 

p= a aq : ( 1 P(V; S) - P(V; S) 

zj O 
is canonically defined over R4 with 

a a a a a _=-_i_-j--k-+--_, 
a4 8x1 ax2 ax3 ax4 

(18) 

(19) 

where the bundle S of euclidean spinors in four-dimensions splits into a pair of quaternions 
S = V x (H @ I-I) with Clifford multiplication c : CC4 + Homa:(S, S) given by the four 
complex 4 x 4 matrices 

c(e,) = vfi = 

with (~7~) denoting the Pauli matrices and [el , . . . , eq) a basis of R4. The connection defining 
the euclidean Dirac operator is just the standard connection d for S. 

Then any connection A for the trivial bundle V x @* defines in a natural way a twisted 
Dirac operator & = $)@A Id,n . It is characterized by the property 

whenever (Af)(x) = 0. It is a true (total) Dirac operator with regard to the induced Clifford 
multiplication c(a) @ 1 and the induced connection d 123 A. 

Now we must discuss the choice of the connection A. From a physical point of view it 
does not suffice to consider only the trivial choice, namely the standard connection d in 
V x c2 given by exterior differentiation c, atieW H c, czWafi. Roughly speaking, the 
standard connection would correspond to the description of two non-interacting fermions. 
To change that we introduce a smooth family h of SU(2) matrices parametrized over 8 V; 
this is equivalent to introducing a smooth connection V over the whole ball which is pure 
gauge at the boundary with regard to h; or, equivalently, we introduce a vector-valued field 
{A@} which is pure gauge at the boundary with regard to h providing Vep f = af/ax, + 
A, f - fA, for any f E P’(V; V x UZ*) and e@, the @h basis vector in R4. 

The geometrical idea behind demanding the interaction boundary term to behave as pure 
gauge is to get a non-trivial curvature form Qv = CCL_ FPv dx,, A dx, corresponding to 
an action J Fiv dx c 00 with 
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e 0 V av 

Fig. 1. The collar [0, E) x aV. 

F WV := [Ve,, V,,] = V,,V,, - V,,V,+, = i&A, - &A, + [A,, A,] E L2 

and F,,(x) -+ 0 for Ix 1 -+ 00. This is equivalent to writing the connection V = d+x, A, 

with A,(X) -+ ha,hsl for 1x1 -+ 00. 
The different mathematical descriptions are formalized in the following definition. 

Definition 3.1. Let Conn( V x C2) denote the affine space of smooth connections for the 
bundle V x C2. A connection A E Conn( V x C2) is called pure gauge at the boundary 
aV = S3 if in a collar [0, E) x aV (see Fig. 1): 
- A does not depend on the normal (radial) coordinate r; and 
- there exists a smooth h : aV - S3 + SU(2) - S3 such that A = h o d o h-’ in the 

collar, where d denotes the standard connection given by exterior differentiation. 

We write Conno(V x C2) for the subspace of connections which are pure gauge at the 
boundary. 

Proposition 3.2. 
(a) A connection A for V x C2 is pure gauge at the boundary if it can be written in the 

form A = d - (dh)h-’ in a collar of the boundary. 
(b) If A is pure gauge at the boundary, then the tangential Dirac operator B over aV 

corresponding to the partial Dirac operator 4)Af over V takes the form 

B = i&3 @‘-(dh)h- I Id= (Id@h)(fl@Id&d@h-‘) (20) 

with j3 @ Idcr = 9 $3. Here j3 = ,J,3 denotes the tangential operator over S3 corre- 
sponding to the euclidean Dirac operator J9’. 

ProoJ: To prove (a) we find 

Af = (hdh-‘)f = hd(h-‘f) = h(h-‘df + d(h-‘)f) = df - (dh)h-‘f. (21) 

To prove (b) we notice that the restriction of A to the boundary takes the form -(dh)h-‘, 
therefore we get such a simple form for lifting 9 to the auxiliary bundle. For details of the 
calculation see e.g. [17,24]. cl 



234 B. Boo&Bavnbek et al. /Journal of Geometry and Physics 22 (1997) 219-244 

We shall discuss the APS index formula for the operator PA 

index (pi)n, = 
J 

CY(X) - 2 (r]~(0) + dim ker B) . 

From Proposition 3.2 we have 

rl~(O> = 2rlgs3 (0) and dim ker B = 2 dim ker Js3. 

We find deg(h) for the value of the integral of the index density. This result is actually 
independent of the choice of the metric. Then 

index (4i)n, = deg(h) - ‘la,3 (0) - dim ker &3. (22) 

The two numbers on the right were found to vanish for the standard metric of R4, slightly 
modified close to a V in a calculation done in [ 191, see also [ 181. In that metric the tangential 
Dirac operator on the 3-sphere ps3 has a spectrum symmetric about h = 0 and is invertible. 
More precisely: 

Lemma 3.3 (Schmidt, Bincer [ 191). The tangential Diruc operator a over a V correspond- 
ing to the (free) euclidean Dirac operator over a ball V c Iw4 of radius R in a spherical 
metric has eigenvalues A with multiplicity M(h) expressed as 

AR = &I($ + K), M(h) = K(K + I>, K = 1,2,... (23) 

ProojT To explain the metric chosen in [ 191 we must repeat parts of the proof. First rewrite 
the operators @ = a/L@ and jZJ_ = -a/iZIq defined above in (18) and (19) as 2 x 2 
matrices 

a 

( 

a4 + i& a2 + ial 

> 

and a a4 - ia -a2 - i& 

z= -a2 + iat a4 - ia ag= a2 - iat > a4+ia3 

Then parametrize V by 

xt =rsinf3sinqq, x2 = r sin8cosqq 

x3 =rcosesinq2, x4 = rcosOcosp2, 

0 5 pt.2 5 2x, 0 5 8 ( in, 0 5 r p R 

and notice 

a4 f ia =e+ 
( 

sin 8 
c0s6a, - -a8 f I-a, , 

r rcos9 > 

a2 * iat = efvpl 
( 

sin ear + 
cos 8 
--a,k’a,, . 

r rsin0 > 

To cast 

p= O ( -am 
a/aq 0 > 
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into the required product form 

p= l-car + a) 

close to the boundary, the partial Dirac operators a/aq and a/aq are replaced by 

with 

R := (r3 sin8cos8)‘/* 

Q := (r3 sin0 cos@‘/* 

cp+ := ;cw h v2). 

This transformation is equivalent to a slight modification of the metric of V near the bound- 
ary. One obtains 

F = a, + 9, jF=-a,+g 

with 

i + ia,, + ia, a0 +icotea,, - imea, 
-ae +icotea,, - imea, i - ia,, - ia,, 1. (24) 

Setting r := R in (24) we get an explicit form of the tangential Dirac operator. For details 
of the eigenvalue determination of fl we refer to [ 19, pp. 3996-39971. 0 

Remark 3.4. 
(a) We also refer to [ll] which ensures the same result, namely a symmetric spectrum, 

not containing zero, for a particular metric set-up coming from a metric over the 4- 
ball which is a product near the boundary. Actually, for Kori’s metric the Calderon 
projector P+ and the APS projection Z?, coincide. Clearly the Calderon projector and 
the APS projection coincide for the standard metric in two dimensions, but not in four 
dimensions; see also Section 5 and Appendix A. 

(b) Also from [9] it follows directly that the tangential Dirac operator over the 3-sphere in 
standard metric is non-singular with symmetric spectrum. 

Recall that Conna(V x C*) denotes the subspace of connections which are pure gauge 
at the boundary. 

Proposition 3.5 (Ninomiya, Tan [ 161). For a suitable metric we have 

index ($Ji)nh = deg(h) (25) 



236 B. Boo&Bavnbek et al./Joutnal of Geometry and Physics 22 (1997) 219-244 

for any A E Conno(V x C2) with A = h o d o h-’ in a collar of 8 V and suitable smooth 
h : a V += SU(2) where nk denotes the corresponding APS projection (as dejined in the 
following corollary). 

Proof The proposition follows at once from the APS index theorem (14) and Lemma 3.3. 
0 

In the same article [ 161 Ninomiya and Tan pointed out that the APS boundary condition 
is natural or physical in the following sense: 

Corollary 3.6. Let 

Conno(V x C2) 3 A I-+ l7h := l7,(d @h I&:2) E W4+ @A IQ) 

I-+ n(h) := (I$)# E G+(@% I@) 

denote the mapping provided by the APS boundary condition 

l7(h) := 
n, (a ch Id,2 ) 0 

0 Nn, (8 @/, Id&‘-’ > ’ 
(26) 

where h : aV + SU(2) denotes the mapping corresponding to the connection A which 
is supposed to be pure gauge at the boundary. Then the family of operators 

(~A,n(h)jA,Conno(VxC2) which act like @@A I+2 with 

dam pA,l7(h, 

s E H'(V; S @ C2) I U(h)(s) = ; N(Id _oflh)N-~ 
)(rr)=o) 

satisfies the following three fundamental conditions: 
(a) @A,J(h) is self-adjoin& 
(b) IT(h) is ys-invariant, and 
(c) the domain dom &J(h) is gauge-invariant. 

We recall the meaning of(c): Let U : V -+ SU(2) denote a gauge transformation 

f(x) I--+ U(x)f(x)U_‘(XL 

A,(x) t+ U(x)A,(x)U-‘(x) - E(x)U-l(x), 
CL 

then the connection A transforms as follows: 

&,.f I* i+- U(x)(A,,f MU-‘(x), 

A w UAU-‘, and 

QA t+ UOAU-’ - (dU)U-? 

This motivates the following definition: 
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Definition 3.7. A smooth family 

Conn(V x C2) 3 A I-+ P(A) E GT~~(PA) gW4$) 

is gauge-invariant if we have 

237 

P(A1) = U#P(A)(U#)-’ (27) 

for all A, A’ E Conn(V x C2) where A1 := UAU-’ with arbitrary U : V -+ W(2) and 
U# :=Idgc2 U. 

Remark 3.8. (1) Clearly, for any A, A1 E Conn( V x C2) with A1 = UAW’ we have 
pointwise (see [ 171) 

p/t, = p@‘A, Id = &&@A Id)(U#)-’ = U#&,(U#)-‘. 

Therefore property (c) - gauge-invariance as defined in (27) - means 

PA,,P(A,) = U#PA,P(A)(U#)-' 

and, especially, 

dom (%,,P(A,)) = U#(dom @A,P(A)); cw 

i.e. we require that the boundary condition transforms in a correct way under variation of 
the background operator, respectively, of the connection. 

(2) The change of the number 

(@AiS) := ;(rl?&9+dimkerBA) 

for arbitrary change of the connection A, here considered solely as a connection over the 
closed manifold f3V, was addressed already in [2] and further investigated in [24]. It turns 
out that 

(@A1 ; 0) - ((?A; 0) = index @AthEIO.l] mod if. 

Here t H At is a smooth family of connections connecting 

A = A0 with A1 = UAU-’ 

and {$A, ],G1o,ll denotes the corresponding family of Dirac operators parametrized over S’ 
or, put differently, the elliptic differential operator of first order over the torus S’ x aV 
defined by that family. 

Proof of Corollary 3.6. The first two properties are obvious from the choices. The gauge 
invariance follows from the corresponding transformation law for the tangential operator 

P @h, Id,z = U#$ @h Idcd@-‘, (29) 

where the smooth families h, ht := U(avh(U]av)-’ : i3V -+ W(2) correspond to the 
connections A, A1 which are supposed to be pure gauge at the boundary. Eq. (29) implies 
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that the eigenvalues do not change under gauge transformation and that the eigenspaces 
transform like EA(&,) = UEA&). Hence n(h) satisfies (a), (b), and (c). 0 

Note 2. 
(1) One should keep in mind that from a geometrical point of view there is no particular 

reason to choose the APS boundary conditions among all the other boundary problems 
which, as we shall see, equally satisfy (a)-(c); in other words, a stronger requirement 
than covariance of the domain under gauge transformations of the connection seems to 
be necessary in order to select that boundary condition. 

(2) Moreover, for our purpose it is a decisive aspect of the prominent APS boundary con- 
dition that its index 

index &n,, = n+U&) - n-(&J 

does not vanish as seen above in Proposition 3.5 stating index pffch) = deg(h) under 
suitable conditions about the metric. But there are other quite natural boundary condi- 
tions RA instead of flA which fulfil conditions (a)-(c) of Corollary 3.6 and additionally 
provide global chiral symmetry, namely 

(d) the vanishing of index $&.. = n+(RA) - n_(RA). 

As announced in the Introduction: 

Theorem 3.9. There exists a smooth map 

R : Connu(V x C2) 3 A t+ %?A E Gr(@$, 

which satisfies (a)-(d). 

Proo$ It is immediate that 

A H RA := p+(p+ ‘%‘A Id,n) 

satisfies all conditions, where P+ (@+ @A Idcn) denotes the Calderon projector of the partial 
Dirac operator p+ @A Id,2 . 0 

Note 3. 
(1) A nice feature of the Calderon projector is that it is by definition invariant under parity, 

i.e. 

N 0 (Id - P+(p+ ‘%A Id,z)) 0 N-t = P+@- @‘A Id,z), 

whereas the APS boundary condition is invariant under parity only if the tangential 
operator is invertible. 

(2) One must expect the existence of a lot of sections of the Grassmannian which lead to 
families satisfying (a)-(d) (see also Section 4). From a theoretical point of view, the 
Calderon family is the best solution available for the global chiral symmetry problems, 
since it does not only give global chiral symmetry but also the following proposition. 
It simplifies radically e.g. the calculation of c’(s) mentioned in the Introduction. 
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Proposition 3.10. For the Calderdn family the dimensions of the zero frequency modes of 
positive and negative chirality vanish; i.e. we have 

n*(?+(P+ @A I+)) = 0. 

4. Alternatives and further ramifications 

There are various ways of obtaining global chiral symmetry by imposing elliptic, self- 
adjoint, ys-symmetric, and gauge-invariant boundary conditions in the presence of local chi- 
ral anomaly (i.e. non-vanishing deg h for connections which are pure gauge at the boundary). 
One way is the Calderon projector. It removes all solutions such that kernel and cokernel be- 
come trivial. This makes many calculations easy. But since the Calderon projector depends 
on the gauge configuration also inside the region and not only on the boundary, this must 
have consequences in, for example, the derivation of identities by variation of the gauge 
field configuration in a subregion. 4 

Instead of removing all solutions by imposing the Calderon projector one can add further 
solutions to the original Dirac equation with APS boundary condition until one gets global 
chiral symmetry. There are three ways to do that. 

Let us begin with a given connection A in the auxiliary bundle V x c2 which is pure 
gauge at the boundary. Hence it can be expressed in a collar of the boundary by a mapping 
h : S3 + W(2) which has a degree (topological number) deg h. If deg h = k is non-trivial, 
the dimensions n+ and n_ of the zero modes (subject to the APS boundary condition flh) 
do not coincide as seen in Proposition 3.5. Then, to get global chiral symmetry we enlarge 
the solution spaces until n+ and n_ become equal. More precisely: 

Alternative 4.1. The easiest, but physically hardly very meaningful way of doing the equal- 
ization of the solution spaces is to take a second copy of the coefficients bundle V x @’ and 
to choose a connection A’ which is pure gauge at the boundary a V with a unitary mapping 
g of opposite degree -k. 

Then, instead of tensoring the original euclidean Dirac operator ‘Df solely with the h- 
connection, we do two twistings: first with h, then with g. The resulting twisted Dirac 
operator 

DD’+ := 2)’ @A Idc;! @)A’ Id,2 = D; @‘A’ Id,2 

with coefficients in C2 8 C2 = C4 admits again an APS boundary condition l7’ which is 

gauge invariant such that 

n+ - n- = indexV’+ p 

=deg(h@g)=deghg=degh+degg=k-k=o. ??

To get global chiral symmetry one can also apply a less trivial mirror process: 

4 These calculations will be presented separately. 
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Alternative 4.2. Instead of twisting the global Dirac operator z)i over the full 4-ball V it 
suffices to twist the transversal (tangential) Dirac operator Bh with a connection of opposite 
degree over the 3-sphere. We get a new operator B;Z. Then we apply the APS spectral 
projection fl; corresponding to the twisted operator BI, to the original operator VDAf. It 
follows that fli is an admissible boundary value problem for Di. It belongs to the same 
Grassmannian as the standard APS projection nh and all the nice properties (a)-(c) are 
guaranteed, but L$ belongs to a different connected component. In fact, the index jumps 
by the winding number yielding global chiral symmetry. 

To see this we recall from Eq. (20) the formula 

flh = (Id @ h)(&($) 8 Id)(Id @ h-l), (30) 

where fll (a) denotes the APS spectral projection belonging to DD+. We recall index Z&,, = 
n+ (APS) - n- (APS) = deg h. Here one can prove that nh belongs to the same Grass- 
mannian as n,(J) (more precisely as n,(a) @ Id), but with the virtual codimension 
i(flh, n,<a>> = degh. 

Then we go one tensoring further, namely from & to 

Bi := (Id @ g)(& 8 Id)(Id 8 g-‘) 

with deg g = - deg h. We generalize formula (30) and get a similar formula expressing L$, 
the APS projection belonging to the operator Bi, in terms of flh, and a new jump formula 
for the virtual index: 

l(nA, nh) = i((Id @ g)(flh 8 Id)(Id @ g-l), (nh c3 Id)) 

= index ((Id - (flh @Id) @ Id @ g)(& @ Id)(Id @ g-t) o (nh @I Id)) 

= degg, 

indexv,4,n,: = i(&(&), P+(D$) + i(n,(Bi), n(Do,+)) 
=degh +degg = 0. 

Note 4. An attractive feature of Alternative 4.2, discussed in [ 131, is that in fact the (non- 
free) operator D)A is not changed; only the boundary condition is changed. 

Alternative 4.3. One more alternative is provided by a suitable spectral cut (weighted 
spectral projection), see Example 2.3(c) and, more generally for the problem of uniform 
choice of the spectral cut [ 121. 

5. Some remarks on the Calderbn projector 

We begin with the construction of the Calderon projection. Let M be a compact smooth 
oriented Riemannian manifold with boundary like in Section 1. Let i = M Uy (-M) 



B. Boo&Bavnbek et al./Joumal of Geometry and Physics 22 (1997) 219-244 241 

denote the double of M and ?’ = S+ UN S- the corresponding spinor bundle over G. 
We denote by 5’ the invertible double of the operator 2)+ on k. This is an invertible 
Dirac operator on iii’ extending D +. The invertibility means that there exists an elliptic 
pseudo-differential operator Q of order - 1, such that 

c+G = Id and !$+ = Id. 

For any f E C”(Y; S+ Ir) we denote by 6 63 f the distribution: 

(6 @ f; S) := 
s 

(f; m(s)) dy for s E C”($; ?>. 

Y 

In fact, the map f --+ S 63 f is the adjoin: map to the map yo . Given f E C?‘(Y; S+ ] r) 
we denote by F(f) the distribution over M defined as 

F(f) := Lx8 c3 rf 1. 

Now we can give the formula for the Calderon projection: 

P+P+)f := ,‘co F(f )luxy = yoF(f >. 

Although this formula is abstract one can see that basically it depends only on Green’s 
function of the operator 6’. The definition extends to f E L2(Y; S+(y) by continuity 
defining a pseudo-differential operator and yielding the Cauchy data space X+ (27+) for the 
range of P+(D+), and it turns out that L2( Y; S+ 1 y ) splits into the direct sum 

L2(Y; s+lY) = T-l+p+j 43 N(‘FI+(zv), 

where N denotes Clifford multiplication by the inward unit tangent vector (as above), 
27 = (@)*, and N(‘FI+(LT)) = 7-L@), the outer or right Cauchy data space of the 
invertible double L%. 

Next we want to explain the relation of the Calderon projection to the spectral projection 
of the tangential operator. 

Proposition 5.1. Let jDi denote the euclidean Dirac operator over the 4-ball twisted by 
a connection A which is pure gauge at the boundary with deg h different than 0. Then 
its Calderdn projection P+ (pi) and the spectral projection li’,o (ah) of the correspond- 
ing tangential (“spherical”) Dirac operator ?h belong to different components of the 
Grassmannian. 

Proof Let JD+ CT9 Id,2 denote the untwisted operator. The operator J?Ji = p”+ 8.4 Id,2 has 
the same principal symbol, hence t 0: + (1 - t)($J+ @ Id,z) is a path of Dirac operators. 
It follows from the construction of the Calderon projection that it changes in a continuous 
way (see [ 151 for details). Therefore P+(pi) and P+(@+ ~3 Idc:2) belong to the same 
connected component of the Grassmannian. 
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The index of (J9)+ 18 Id,z)n,,, is equal to 0 (the standard connection has degree 0). This 
index is equal to i(n,u(jl@ Id), P+(@+ @I Idcz)), hence those projections are in the same 
connected component of the Grassmannian. On the other hand 

deg h = l(fl,o(g @h 14, P+<&>> # 0 

and we see that the spectral projection and the Calderdn projection of the twisted operator 
belong to different connected components of the Grassmannian. Cl 

Appendix A. Adiabatic limit of the Cauchy data space 

We showed that usually the Calderon projection and the APS condition (the spectral pro- 
jection) belong to different connected components of the Grassmannian. There is, however, 
a more precise description of the difference between those two boundary conditions. We 
give a brief review of some results of the beautiful work of Liviu Nicolaescu [ 14,151 which 
are valid in great generality. 

We have to point out that in his work Nicolaescu considered the case of an odd-dimensional 
manifold with boundary, but the result holds also in the case of the total Dirac operator 23 
on an even-dimensional manifold with boundary. 

For real, positive R we define the manifold MR as 

MR := ([-R, o] X Y) u hf. 

The operator 2, extends to it’fR in a natural way. We study the Calderon projection P: (27) 
and the Cauchy data space ‘MT(D) of the operator V on MR . We introduce the notion of 
the resonance set for the operator D on MR : 

NR(D) := it 1 ff<f@) f-@(D) = {oj}. 

Here HCf (3) denotes the subspace of L2(M; S) spanned by eigensections of J corresponding 
to eigenvalues smaller than r. Nicolaescu proved that there exists a real number E(D) := 
sup{ NR (D)} 5 0. One of the main technical results of his work is the following theorem: 

Theorem A.1. There exists a positive numbera anda Lugrangian subspace C of H[_n,a] (9) 
such that 

It was pointed out by Nicolaescu that the convergence in formula (A. 1) is not uniform. 
There is a more precise result in the so-called non-resonance case. 

Definition A.2. The operator D is called non-resonant if E(D) = [O). 

In this case the convergence is uniform and we have the following result: 
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Theorem A.3. 

lim ‘H:(D) = H,u<a> 63 C2, 
R+CC 

where C2 denotes the space of the limiting values of so-called extended L2-solutions of the 
operator V. 

Now we can prove again the result of the previous section: 

Corollary A.4. The euclidean Dirac operator PA on the 4ball V coupled to any connection 
A which is pure gauge at the boundary is a resonant operator 

Proofi Assume that the operator PA is non-resonant. We know that in our case the tangential 
operator is invertible, and therefore 

which means that the Calderon projection P(&) and the spectral projection IT, (ah) onto 
H,o@h> belong to the same connected component of the Grassmannian and hence by [5, 
Theorem 20.81 

index (pi), = 0, 
> 

but we know that it is equal to deg h # 0. 0 
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